$$
\begin{aligned}
m_{s e c} & =\frac{f(c+\Delta x)-f(c)}{(c+\Delta x)-c} \\
& =\frac{f(c+\Delta x)-f(c)}{\Delta x} \quad=\text { Difference Quotient }
\end{aligned}
$$

Defn: If f is defined on an open interval containing c, and if the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=m
$$

exists, then the line passing through ($c, f(c)$) with slope m is the tangent line to the graph of f at the point $(c, f(c))$. (m is called slope of the graph of f at $x=c$)
EX: Find the slope of the graph $f(x)=x^{2}-2 x-3$ at the point $(3,0)$

Defn: The derivative of f at x is given by:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}
$$

provided the limit exists.

Terms:

Differentiation: process of finding the derivative of a function
Differentiable: if a functions derivative exists at x
Notation: $f^{\prime}(x), \quad \frac{d y}{d x}, \quad y^{\prime}, \quad \frac{d}{d x}[f(x)], \quad D_{x}[y]$

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =f^{\prime}(x)
\end{aligned}
$$

EX: Find the derivative of $f(x)=x^{3}+x^{2}$

Note: If f is continuous at c and $\lim _{\Delta x \rightarrow 0}\left|\frac{f(c+\Delta x)-f(c)}{\Delta x}\right|=\infty$ then the vertical line, $x=c$, passing through $(c, f(c))$ is a vertical tangent line.
EX: Find an equation of the tangent line to the graph of f at the given point.

$$
f(x)=x^{2}+2 x+1,(-3,4)
$$

Alternate Limit Form : $\quad f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \quad$ Provided this limit EXISTS!!!!

$$
\text { i.e., } \lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}
$$

Note: If a function is not continuous at $x=c$ then it is also not differentiable at $x=c$. Theorem: If f is differentiable at $x=c$, then f is continuous at $x=c$.

EX: $f(x)=\llbracket x \rrbracket$
****Functions which are discontinuous at $x=c$, have a corner at $x=c$, or that have a vertical tangent at $\boldsymbol{x}=\boldsymbol{c}$ are NOT DIFFERENTIABLE!!!!!!!!!!!!!!
Investigate:

1) $f(x)=x^{\frac{2}{3}}+1$
2) $f(x)=x^{\frac{1}{3}}$
3) $f(x)=|x+3|$
